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Abstract: The authors study the design of heterogeneous two-tier wireless sensor networks (WSNs), where one
tier of nodes is more robust and computationally intensive than the other tier. The authors find the ratios of
densities of nodes in each tier to maximise coverage and network lifetime. By employing coverage processes
and optimisation theory, the authors show that any topology of WSN derived from random deployments can
result in maximum coverage for the given node density and power constraints by satisfying a set of
conditions. The authors show that network design in heterogeneous WSNs plays a key role in determining key
network performance parameters such as network lifetime. The authors discover a functional relationship
between the redundancy, density of nodes in each tier for active coverage and the network lifetime. This
relationship is much less pronounced in the absence of heterogeneity. The results of this work can be applied
to network design of multi-tier networks and for studying the optimal duty cycles for power saving states for
nodes in each tier.
1 Introduction
Network design is an important research area in wireless
sensor networks (WSNs). The ability of WSNs to perform
large scale, distributed sensing and data processing has led
to research in potential applications in monitoring and
tracking. The individual nodes that make up the WSNs are
equipped with sensors and actuators, non-replenishable
battery, transceiver and a microprocessor for data processing
functions. Nodes sense and process data gathered from
their sensing ranges and transmit these data to a central
sink or base station (BS). In spatially large networks,
transmitting data from nodes to a distant BS, consumes
significant portion of the battery energy. Relaying can be
employed to avoid the energy consumption incurred in
single-hop networks resulting in considerable latency of
data transfer from nodes to the sink. In most
environmental monitoring applications, nodes in
geographical proximity record similar data, because of high
degree of correlation occurring in the sensed phenomenon.
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One approach that takes advantage of such correlated data
is to establish a two-tier network of regular nodes and
processing nodes. The regular nodes sense data and
transmit it to the nearest processing node. Thus, instead of
using single-hop networks or relaying, the processing nodes
eliminate/reduce transmissions of redundant data and
achieve improvement in network lifetime. Clustering is one
such example of a tiered network topology. There are two
general ways in which clustering may be facilitated. The
first is clustering by selection, which is the most common
method cited in current literature on clustering in WSNs.
The second way to facilitate clustering is manifested in
naturally clustered WSNs, where nodes in the higher tier
are not chosen from among the nodes. In a naturally
clustered network, the higher tier nodes are a distinct set of
nodes scattered over the region with a smaller intensity of
distribution than that of regular nodes. Thus we assume a
two-tier hierarchy comprising of two distinct sets of nodes:
sensor nodes (M-tier nodes) and processing nodes (N-tier
nodes). The N-tier nodes are assumed to be robust, less
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power constrained and larger (akin to localised processing
stations) that are capable of intensive processing and
computation as compared to those of the M-tier nodes.
The M-tier nodes that lie within the communication range
of a N-tier node form a cluster. The N-tier nodes are also
responsible for communicating to other N-tier nodes and
relaying cluster data to central BS. Two-tiered sensor
networks are quite common because of the uncontrollable
deployment in many situations and thus their
characteristics can provide valuable reference for sensor
network design. However, our framework can be easily
extended to study two-tiered network of homogeneous
nodes in the clustering by selection topology, where N-tier
nodes and M-tier nodes are homogeneous in sensing range,
battery life and computational capacity.

In this paper, we study the problem of designing a two-tier
WSN in the context of finding the densities of M-tier and
N-tier nodes. Further, given the ratio of M-tier to N-tier
nodes, we study the impact of density control to achieve
further energy savings. Considerable attention has been
given to the issue of density control for power management
in dense randomly deployed WSNs [1, 2]. The motivation
for this research area arises from the redundancy afforded
by dense WSNs, where k-redundancy refers to k . 1
sensors sensing any given point (x, y) in the deployment
region at all times. Random deployment procedures may
result in such topologies with k redundancy; however,
power management and reliability constraints require that
we do not need all k sensors sensing the point (x, y). This
has given rise to the notion of n-coverage, where at least n
(1 , n , k) of the k sensors are in the awake mode of
operation. This method of scheduling a node to operate in
awake/sleep states contributes to power management by
reducing the duration of idle mode of transceiver operation
in a node. Previous studies [3, 4, 5] have shown that the
power consumption in the awake state is at least an order
of magnitude greater than that in the sleep state. Within
the awake mode of operation, the idle mode of listening for
transmissions from the BS or other nodes consumes as
much energy as the transmit operation. Clustering of nodes
[6, 7] to reduce transmissions of redundant data is one
approach for power management in WSNs.

In order to study the impact of network design in tiered
networks on energy conservation, we formulate two
objectives. The first objective is the minimisation of
vacancy, where vacancy in the deployment region is defined
as the area which does not lie within the sensing range of
any node. The second is improvement of network lifetime.
Mathematically, it is equivalent to the following question:
What should be the densities of N-tier and M-tier nodes
to ensure minimum vacancy and extend network lifetime
with given k-redundancy of nodes? Note that, as
mentioned earlier in the introduction, k-redundancy refers
to the actual redundancy as a result of deployment, while
active coverage resulting from n-redundancy (n , k) refers
T Commun., 2010, Vol. 4, Iss. 7, pp. 758–767
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to the actual number of nodes that are in the awake mode
sensing a given point.

This paper addresses the problem of density control for
active coverage in heterogeneous WSNs. The analysis can
also be applied to the case of a single-tier homogeneous
WSN, in which case the optimisation constraint of
minimising vacancy gives the density of nodes in the
network. Assuming that the deployment region is covered
with M-tier and N-tier nodes according to Poisson
processes with intensity l1 and l2, respectively, where
l2 , l1, we study density control for the following two cases:

1. All-on network, where all the nodes are continuously on,
providing k-active coverage in a network with k-redundancy.

2. Power management, where a node can be in one of two
states – ‘on’ (awake) or ‘off ’ (sleep), where the ‘off ’ state
denotes that the node powering down its sensors and
actuators, transceivers and computation circuitry. The ‘on’
state denotes that the state can be transmit, receive or idle
state while also performing sensing for the duration of the
‘on’ state. This power management models more realistic
deployment scenarios for WSNs to prolong network lifetime.

We analyse both the ‘all-on’ case and ‘power management’
cases for various network configurations resulting from
combinations of densities of M-tier and N-tier nodes in
the deployment region. Specifically, we analyse the
following combinations:

1. Dense networks with high density of M-tier and N-tier
nodes.

2. Regular density networks with high density of M-tier
nodes but low density of N-tier nodes.

3. Sparse networks with low density of M-tier nodes and low
density of N-tier nodes.

4. The fourth case of low densities for M-tier nodes and high
density of N-tier nodes is not feasible, and hence will not be
investigated.

The ‘all-on’ and power management cases are analysed
with respect to meeting power management and coverage
objectives. In the ‘all-on’ case, the emphasis is on efficient
network design and coverage by choosing the optimum
ratio of densities for M-tier and N-tier nodes distributions.
In the power management case, the emphasis is on
minimising vacancy (maximising coverage) by increasing
the density of active coverage while satisfying network
power constraints to enhance network lifetimes over the
‘all-on’ case. In this paper, we make the following
contributions:

† We provide expressions to optimise coverage in the
deployment region. This paper lays the groundwork for
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analysis of coverage properties and power control in various
hierarchical topologies of networks. In particular, the
analysis in this paper can be easily extended to a three-tier
network comprising of storage nodes, communication
backbone and regular nodes. In this case, knowing the
sensing and communication abilities of each tier of nodes,
the network can be designed such that we have the ratio of
nodes in each tier for storage, communication and regular
nodes.

† We also analyse the optimisation of active coverage in a
k-redundancy WSN with various topologies while ensuring
that power constraints of network operation are satisfied.
The analysis for adaptive density control can also be
modified to obtain the duty cycle for nodes in the active
state. This can be easily extended to obtain the optimal
duty cycle, for a given density of M-tier and N-tier nodes
in the tiered network. There has been similar prior research
in [8, 9] to study the probability of nodes in active state. In
this paper, we set a given duty cycle for nodes whose
densities have been optimised and then study its impact on
network lifetime. We validate the proposed model of
maximising active coverage for network lifetime activation
with the help of numerical simulations.

The rest of the paper is organised as follows: Section 2
presents the coverage model for various densities of nodes
in a WSN and develops the analytical model for
maximising coverage with and without power management.
Section 3 presents the numerical results of the proposed
power management model. Section 4 presents related work.
Finally, Section 5 concludes the paper and presents future
research directions.

2 Coverage model
A process P is said to be a stationary or homogenous Poisson
point process P with intensity l [10] if:

1. the number of points ji in any Borel subset S of R is
Poisson distributed with mean lkSk, and

2. the numbers of points in any number of disjoint Borel
subsets are independent random variables.

A process is called stationary if and only if the function
l is constant almost everywhere. A Boolean model in
k-dimension Euclidean space is just the coverage pattern
created by a Poisson-distributed sequence of random sets.
Specifically, let P ; {ji , i � 1} be a stationary Poisson
process of intensity l in R, the points ji being indexed in
any systematic order. Let S1, S2, . . ., be i.i.d. random sets,
independent of P. Then

C ; {ji þ Si , i � 1} (1)

is a Boolean model, where the Poisson process P is said to
drive the Boolean model and the shapes Si are said to
0
The Institution of Engineering and Technology 2010
generate the model. The expected vacancy within a region
R denoted by E(V ) [10] is

E(V ) ¼ kRk exp (�lkSk) (2)

where l is the intensity of the point process for nodes, kRk is
the area of the deployment region and kSk is the expected
area of the node coverage. This vacancy denotes the part of
the deployment region that is not covered by any node. In
contrast to this moderate distribution of nodes in the
deployment region, some WSN applications may call for
dense networks with higher concentration of nodes
resulting in lesser vacancy in the region. The high intensity
of nodes in the deployment region differs from the case of
moderate intensity, in that vacant areas of the region are
fewer and smaller. The vacancy in a two-dimensional (2-D)
deployment region due to high intensity distribution of
nodes with circular coverage disks is given by [10]

EVd ¼

ffiffiffiffi
p
p

G(3)

G(1:5)

2G(1:5)

lG(1)

� �2

¼
a

l2
(3)

where a is a constant given by

a ¼

ffiffiffiffi
p
p

G(3)

G(1:5)
(2G(1:5))2

In the other case of sparse networks with low intensity
distribution of nodes, where the vacancy in the 2-D
deployment region R is almost equal to the area of the
region R, the probability that any two coverage disks will
not intersect each other is very high. In such a scenario, an
approximation to the vacancy in a sparse network is given
by [10]

EV�sparse ¼ kRk � E(N )dkE(kSk) (4)

where N is the number of nodes in the deployment region,
E(kSk) is the area of the coverage disk of any node S and d

denotes the scale parameter as a function of the intensity l of
distribution of nodes. We will use these results from the
theory of coverage processes for varying densities of nodes in
a Boolean model for optimising the tradeoff between coverage
and network power consumption in the rest of this paper.

2.1 Coverage optimisation in an all-on
WSN

In this section, we perform coverage optimisation in WSNs
of various topologies to obtain the maximum coverage with
given intensities of distribution of M-tier and N-tier nodes
in the deployment region. The optimisation for each
topology follows the simple procedure below:

1. Obtain the objective function f (l1, l2), in each of these
cases the objective is to minimise vacancy for the given
topology.
IET Commun., 2010, Vol. 4, Iss. 7, pp. 758–767
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2. Obtain the constraint function g(l1, l2). In this section,
since we are assuming an ‘all-on’ network, the constraint is
that all nodes are in the ‘on’ state.

3. Finally, we perform convex optimisation of the vacancy
subject to the all-on constraint. In the mathematical
analysis some of the objective and constraint functions are
non-convex, quadratic and/or conic. We follow the
standard procedures outlined in [11, 12] to linearise the
optimisation problems. Owing to the space constraint, we
omit the conversion procedure and present the final results
of the optimisation.

(1) Dense networks: Owing to the high density of both M-tier
and N-tier nodes, we expect the vacancy in the deployment
region to be low (approximately equal to zero). We perform
this optimisation subject to the constraint that area no more
than that of the sensing region of a node should be vacant

EV�Cluster � EV�node � Anodeh (5)

where h is some constant greater than the number of nodes,
EV�Cluster is the vacancy in the region after deploying the
N-tier nodes in the deployment region and EV�Node is the
vacancy in the region after deploying the M-tier nodes, and
ANode is the area of the circular coverage disk of a node
with radius R1. The vacancy due to high density l of
nodes in a 2-D deployment region is given by (3) from
Section 2. For densities l2 for N-tier nodes and l1 for
M-tier nodes, the objective function of vacancy in the 2-D
deployment region becomes

a
1

n2l
2
2

�
1

n1l
2
1

� �
, phR2

1 (6)

where n2 and n1 are the number of N-tier and M-tier nodes,
respectively, in the deployment region. The objective
function f (l1, l2) is given by

f (l1, l2) ¼
1

n2l
2
2

�
1

n1l
2
1

� bR2
1 (7)

where b ¼ ph=a is a constant subject to the constraint that all
nodes are ‘on’. Applying the Lagrange duality theory for the
original problem, we take the constraints into account to
formulate the Lagrangian of (5). The Lagrangian
optimisation [13] is thus

D(l1, l2) ¼
1

n2l
2
2

�
1

n1l
2
1

� bR2
1 þ l

e�l1l
n1
1

n1!
þ

e�l2l
n2
2

n2!

 !

(8)

(2) Regular networks: We call regular networks as WSNs with
high density l1 of M-tier nodes and low density of l2 of N-
tier nodes in the deployment region. In such a network, we
approximate the vacancy in the region after deployment of
N-tier and M-tier nodes to be approximately equal to zero.
T Commun., 2010, Vol. 4, Iss. 7, pp. 758–767
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To determine the vacancy, we use the equations from
vacancy for low density of coverage disks for N-tier nodes
and high density of M-tier nodes from Section 2. Thus,
the objective function f for vacancy minimisation is
f (l1, l2) ’ 0.

EV�Cluster � EV�node ’ 0 (9)

f (l1, l2) ¼ kRk � n1l
2
1pR2

1 �
a

l2
2

s.t.

g(l1, l2) ¼
e�l1l

n1
1

n1!
þ

e�l2l
n2
2

n2!
(10)

Simplifying the constraint function using expressions from
inequality theory [14], we obtain

l1 ¼ 1�
2a

kRkh
e2=3(n2�n1)

þ en2�n1 (11)

for the density of M-tier nodes, and

l2 ¼
2a

kRken2�n1l2
1pR2

1

 !1=3

(12)

for the density of N-tier nodes. Thus, the ratio of densities for
efficient coverage of the deployment region in WSN
applications for regular networks is given by l1=l2.

(3) Sparse networks: Owing to the low density of N-tier and
M-tier nodes, we expect the vacancy in the deployment
region to be high, but no larger than that of the sensing
range of a N-tier node to ensure connectivity. We perform
this optimisation subject to the constraint that area no
more than that of the sensing region of a N-tier node
should be vacant

EV�Cluster � EV�node � ACHc (13)

where c is some constant equal to the number of CHs, and
ACH is the area of the circular coverage disk of the CH
with sensing radius given by R2.

Using the equations for sparse networks from Section 2,
the objective function for minimising vacancy is given by

f (l1, l2) ¼ p(l2
1n1R2

1 � l2
2n2R2

2) (14)

Minimising f (l1, l2) subject to g(l1, l2) which is the same
as those in previous two sections, we obtain

l1 ¼ 1þ
hnode

hCH

(l2 � 1) (15)

where hCH ¼ l2
2pR2

2 and hnode ¼ l2
1pR2

1.
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This gives us the ratio of densities for the case of all-on
WSN for maximising coverage with given topology of
sparse nodes.

2.2 Coverage optimisation in a WSN with
power management

A key challenge in energy optimisation for densely deployed
WSNs is selecting the set of sensors that remain awake for a
given cycle. Some of the criteria developed for choosing the
set of active nodes are environment probing [15],
k-coverage [16] and connectivity-based participation in
multi-hop network [17]. In an on-demand network, the
BS can query the network on either a random schedule or
in response to the changes in the underlying phenomenon
monitored by the WSN. For example, a rapidly changing
physical parameter calls for higher number of ‘awake’ nodes
that can observe and report the change in phenomenon. In
this case, the rate of change of the environmental
parameter influences the energy consumption at M-tier
nodes, causing a higher number of transmissions from
M-tier nodes to N-tier nodes or to the sink through other
M-tier nodes that act as relays. While we do not consider
the pattern of environment variation that triggers queries
from the BS, prior work in [2] develops an energy model
which considers reliability of WSN operation and impact
of sensing environment variation on network lifetime.
However, we use the number of broadcast messages as an
indication of network activity, through which we study the
latency and network lifetime performance of the WSN
with and without power management.

Problem formulation: How do we ensure that the power
consumption of the network c with n nodes does not
exceed a threshold G, while still minimising vacancy for
different topologies? We assume that a M-tier node j can
be in either one of two states: ‘on’ with a probability pj or
‘off ’ with a probability 1� pj for an amount of time t. The
values of pj are determined by the application, for example,
in a mostly sleeping network, pj would be close to zero.
Recent research in [8, 9] has focused on studying the
probability that a node stays in the active state. In this
work, however, we obtain the ratio of densities of nodes in
M and N tiers for a given probability pj . We also assume
the power consumption for a node j in either state is given
by wj , where wj�off � wj�on, that is, power consumption
in ‘off ’ state is much less than that in on state and pj

denotes the probability of node j being in either ‘on’ state
and 1� pj denotes probability of node being in ‘off ’ state.

To proceed with the formulation of the power constraint
c, we define the power consumption c as the sum of the
power consumption of every node j in the ‘on’/‘off ’ state.
The state of every node in the network is represented by
Xj , where for all j ¼ 1, 2 . . . N and the states of any two
nodes A and B are mutually independent of each other. We
assume this for simplicity of calculation, since in practice
the decision to switch a node to the ‘on’/‘off ’ state depends
2
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on various factors such as the amount of coverage desired
for the application, residual battery energy and the
reliability constraints. Since the states Xj alternate between
one of two states (‘on’/‘off ’), the power constraint c can be
formulated as a binomial random variable with mean
(l) ¼ np and variance s2

¼ np(1� p). Hence

c ¼
X

j

Xj (16)

Since the power consumption of the network should satisfy
the constraint of being ,G, we need to find the probability
of P(c , G) which is equivalently given by 1� P(c � G).

Since for some t

P(c � G) ¼ P[ exp(tc) � exp(tG)] (17)

�
E[ exp(tc)]

exp(tG)
(18)

¼

Q
j E[ exp (twjcj)]

exp(tG)
(19)

where wj is the power consumption of node j.

But 8j [ [n], where n is the number of M-tier nodes in
the deployment region

E[exp(twjcj)] ¼ pj exp(twj(1� pj))þ (1� pj) exp(�twjcj)

(20)

First we focus on the numerator of equation (19). For a low
value of pj , that is, pj ’ 0, (19) reduces to

E[ exp(twjcj)] ¼ pj exp(twj)þ (1� pj)

¼ 1þ pj exp(twj)� pj (21)

Because (1þ x) � exp(x)

(1þ pj exp(twj)� pj) � exp(pj exp(twj)� pj) (22)

Using the notations for e(.) and exp (.) interchangeably, (22)
can be re-written as

(1þ pj exp(twj)� pj) � exp(pj(e
twj � 1)) (23)

Hence, the numerator of (19) becomes

Y
j

exp(pj(e
twj � 1)) (24)

Using the inequality for r . 1, (er
� 1) . r(e � 1) in (24),
IET Commun., 2010, Vol. 4, Iss. 7, pp. 758–767
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the numerator of (19) becomes

E[ exp(twjcj)] �
Y

j

pj twj(e � 1) (25)

�
Y

j

exp(pjtwj(e � 1)) (26)

� exp
X

j

(pjtwj(e � 1)) (27)

Substituting (27) in (17), we obtain

P(c � G) � exp(t
X

(e � 1)pjwj)� exp(tG) (28)

Let t ¼ G ¼ 1=(e� 1)=
P

pjwj ,

P(c � G) � 1�
1=(e � 1)P

j pjwj

 !2
2
4

3
5 (29)

However, P(c � G) can also be written as

P(c � G) ¼ P
c� G

s2

� �
�

G� G

s2

� �
(30)

¼ 1� f
G� G

s2

� �
(31)

Let nt ¼
P

j pjwj . We assume a Poisson distribution of n
nodes with density lp. Each node stays in the ‘on’ state
with probability pj and the power consumption in the ‘on’
state is won. Therefore neglecting the power consumption
of nodes in the ‘off ’ state since it is very small as compared
to that in the ‘on’ state, the operand of the summation in
the denominator of the RHS is dominated by the power
consumption of nodes in the on state. Denoting won as the
power consumption in the on state, and lp as density of
nodes in the ‘on’ state, the RHS can now be re-written as

nt ¼
e�lpln

p

n!
npwon (32)

Therefore

P(c � G) ¼ exp 1�
1=(e � 1)

(e�lpln
p=n!)npwon

 !2
2
4

3
5 (33)

¼ exp 1�
1=(e � 1)

e�lpln
ppwon

 !2
n!2

n2

2
4

3
5 (34)

¼ exp 1�
1=(e � 1)

e�lpln
ppwon

 !2

(n� 1)!2

2
4

3
5 (35)
T Commun., 2010, Vol. 4, Iss. 7, pp. 758–767
i: 10.1049/iet-com.2009.0074
Let

z ¼
1=(e � 1)

pwon

(n� 1)!

Equation (35) becomes

P(c � G) ¼ exp[1� z2e2lpl�2n
p ] (36)

Hence from (31) and (36), we obtain

1� f
G� G

s2

� �
� exp[1 � z2e2lpl�2n

p ] (37)

Rearranging the terms in (37), we obtain

s2f�1(1� exp[1� z2e2lpl�2n
p ])þ G � G (38)

Since we are modelling c as a binomial random variable with
mean G and variance s2, (38) becomes

np(1� p)f�1[1� exp(1� z2e2lpl�2n
p )]þ np � G (39)

Equation (39) corresponds to the complement of the power
constraint, that is P(c � l). Thus, the power constraint
corresponding to the probability of P(c , l) which is
given by 1� P(c � l) as follows

G , 1� np{(1� p)f�1[1� exp(1� z2e2lpl�2n
p )]þ 1}

(40)

Equation (40) gives us the power constraint for the power
management problem for clustered WSNs.

We now summarise the coverage maximisation against
power management problem for various densities of N-tier
and M-tier nodes. Unlike the case for an all-on network,
we cannot provide straightforward closed form equations
for the ratios of densities of CHs to that of the nodes in
the on state. This is because of the difficulty of obtaining a
closed form solution for the problem of minimising vacancy
to that of maximising network lifetime. In the next section,
we provide numerical results for Monte Carlo simulation of
the WSN with the constraints discussed in Section 2 and
(40). In each case, we minimise vacancy subject to the
power constraint in (40),

† Dense WSNs: From Section 2.1, the vacancy in a dense
network of M-tier and N-tier nodes given by (7) is
optimised w.r.t. (40), that is

f (l1, l2) ¼
1

n2l
2
2

�
1

n1l
2
1

� K
s.t.

G , 1� np{(1� p)f�1[1� e exp(1� z2e2lpl�2n
p )]þ 1}

(41)
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† Sparse WSNs: From Section 2.1, the vacancy in a sparse
network of M-tier and N-tier nodes given by (15) is
optimised w.r.t. (40), that is

f (l1, l2) ¼ kRk{(1� l1hCH )� (1� l2hnode)}

s.t.

G , 1� np{(1� p)f�1[1� e exp(1� z2e2lpl�2n
p )]þ 1}

(42)

† Regular density WSNs: From Section 2.1, the vacancy in a
regular network of M-tier and N-tier nodes given by (2.2) is
optimised w.r.t. (40), that is

f (l1, l2) ¼ 1� hl1 �
a

l2

s.t.

G , 1� np{(1� p)f�1[1� e exp (1� z2e2lpl�2n
p )]þ 1}

(43)

† Moderate density WSNs: From Section 2.1, the vacancy
in a moderate density network of M-tier and N-tier nodes
given by (2) is optimised w.r.t. (40), that is

kRk{ exp(�l2R2
2)� exp(�l1R2

1)}s.t.

G , 1� np{(1� p)f�1[1� e exp(1� z2e2lpl�2n
p )]þ 1}

(44)

3 Simulation results
3.1 Network performance results after
density optimisation in clustered networks
without power management

Figs. 1 and 2 show a comparison of network lifetime
simulation results for network performance obtained by
density optimisation against those in random networks for
the case of a mostly ‘on’ network, where the networks do
not perform any power management through energy-saving
modes of operation. Here, we use BC to denote the
number of broadcast messages. In our model, M-tier nodes
relay their data to the nearest N-tier node, which then
performs data processing and aggregation, and forwards it
to the nearest N-tier node. With clustering, the end users
of the data can benefit by reducing the amount of data
processing to obtain relevant information at the BS. Fig. 1
shows the results of network lifetime in random and
density optimised networks. For all levels of network
4
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activity, we see that density optimisation results in higher
lifetime than random networks. The improvement in
network lifetime is significant for lower network activity
(BC ¼ 10). For increased network activity (BC ¼ 30), the
improvement in network lifetime is less significant. Within
density optimised networks, we see that for low network
activity, dense networks have higher network lifetime than
sparse networks and networks with high density of M-tier
nodes and low density of N-tier nodes. This is because for
low network activity, network lifetime is greatly dependent
on the M-tier node’s radio consumption and
microprocessor power consumption is much smaller than
the node radio consumption. For higher activity, sparse
networks have larger inter-node distances, while networks
with high density of M-tier nodes and low density of
N-tier nodes have larger cluster sizes. The large inter-node
distances in sparse networks prevent communication
between nodes, and hence resulting in higher network
lifetime. Dense networks have the lowest network lifetime

Figure 1 Network lifetime in a two-tiered WSN without
power management, BC ¼ 10

Figure 2 Network lifetime in a two-tiered WSN without
power management, BC ¼ 40
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for high network activity since the increased number of
clusters and higher activity cause faster depletion because of
the radio and microprocessor activity. The best case to
satisfy coverage and connectivity is a high density of M-tier
nodes and low density of N-tier nodes, since it results in a
small number of clusters that dense networks and provides
the same level of coverage and connectivity.

3.2 Network performance results after
density optimisation in clustered networks
with power management

In this section, we present results for the case where power
management is implemented in the network such that
nodes can be in one of two states: ‘on’ or ‘off ’. We present
simulation results for different probability p that a node is
in the ‘on’ state. The optimisation here is performed for the
highest network activity (BC ¼ 40) with respect to
minimising the vacancy for each scenario of M-tier and
N-tier node densities, and subject to the power constraint
imposed by the given value of p.

Figs. 3 and 4 present comparison of network lifetime
between random and density optimised networks for
different values of p. Similar to WSNs without power
management, sparse networks exhibited the highest
network lifetime because of the minimum number of node
connections as compared to other networks. With the
increase in p from 0.2 to 0.7, the network lifetime reduces
because of increased activity of nodes in the ‘on’ state.
Dense networks had the lowest network lifetime because of
the increased cluster maintenance and intra- and inter-
cluster activity. Networks with high density of M-tier
nodes and low density of N-tier nodes reported highest
network lifetime with power management. A comparison
between Figs. 2 and 4 show that power management
results in higher network lifetime for WSNs.

Figure 3 Network lifetime in a two-tiered WSN with power
management for p ¼ 0.2
T Commun., 2010, Vol. 4, Iss. 7, pp. 758–767
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4 Related work
The closest related work to ours in the context of network
design is [18], where the N-tier nodes are not chosen from
among the nodes in a randomised rotation manner [6].
Rather, the N-tier nodes are a separate set of nodes that
receive data from regular nodes and perform data
aggregation and sensing tasks. The authors presented an
energy model for two-tiered clustered WSN, which
consists of N-tier nodes randomly and uniformly
distributed in the deployment region, and investigated the
energy consumption of the network. Another similar work
is [19], where the authors studied the impact of cluster
density on the capacity of ad hoc networks, instead of the
widely used assumption of randomly uniformly distributed
nodes distributed according to a stationary Poisson point
process in the sensing area. They assumed a network model
where clustered nodes with density rc, in a ‘sea of nodes’ of
density rs, such that rs � rc . They showed that the
throughput of clustered networks switches at a critical size
that is dependent on the sensing area A. Before reaching
the critical size, the per-node throughput is almost
independent of A, and depends on cluster size and cluster
density. They derived bounds on the throughput of
clustered networks and helped quantify the concept of
‘large’ networks, that is, networks whose size exceeds the
critical size. Large networks are characterised with increase
in capacity as the size decreases further.

Lots of research has been conducted on organising
hierarchical sensor networks. For homogeneous networks,
many researchers show that hierarchically organising
homogeneous sensor networks can improve the energy
efficiency [4, 20], scalability [21, 22] and communication
capacity. As for heterogeneous networks, Wang et al. [23]
proposed the sensor networks composed of both static and
mobile sensors to achieve balance between sensor cost and
coverage. Singh and Prasanna [24] proposed the sensor

Figure 4 Network lifetime in a two-tiered WSN with power
management for p ¼ 0.9
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networks composed of both low power sensor nodes and
powerful nodes for energy efficiency.

The approach of tiered architectures offers the convenience
and economy of in-node/in-cluster processing of data to
reduce transmissions of redundant data, power control,
scalability, and improvement in network lifetime. One of the
earliest literature on implementing tiered WSN through
clustering in WSNs is low energy adaptive clustering hierarchy
(LEACH) [6], where cluster formation is designed to achieve
prolonged network lifetime by local data processing, rotation
of the cluster-head position among nodes and low energy
MAC access. In [25], the authors proposed a clustering
algorithm, SNOWCLUSTER which creates a three-tiered
hierarchy of nodes, clusters and regions. They used a central
framework administrator SNOWMAN, proposed in an
earlier work to maintaining location information of nodes,
monitoring node status and make local decisions and policy
allocation for individual nodes. The use of this framework
allows nodes to rely on a central framework for policy
enaction instead of using its own resources for neighbour
discovery and other management tasks.

5 Conclusions
In this paper, we have used the concepts of coverage processes
and optimisation theory to explore coverage in various
topologies of WSNs generated by combinations of densities
of nodes in M and N tiers. In each case, we provide
expressions to optimise coverage in the deployment region.
We also analyse the optimisation of active coverage in a
k-redundancy WSN with various topologies while ensuring
that power constraints of network operation are satisfied.
While the latter case of power management does not provide
closed form solutions to the problem of coverage optimisation
against network lifetime extension, we show with the help of
numerical simulations that the proposed model increases
network lifetime while simultaneously achieving maximum
coverage. This paper lays the groundwork for analysis of
coverage properties and power control in various topologies of
heterogeneous networks and opens research issues for other
topologies such as naturally clustered networks. Our future
work in this area will be analysing the network lifetime for
dense WSNs, where the definition of network lifetime
provides a more accurate representation of the residual
sensing and communication capacity, as opposed to the
conventional definition of network lifetime which uses the
time until the first node runs out of battery energy. We also
propose to investigate a routing algorithm that utilises the
properties of coverage and power control already investigated
in this paper to achieve further energy savings and higher
reliability of WSN operation.
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